管桁架結(jié)構(gòu)的受力特點
管桁架,是指用圓桿件在端部相互連接而組成的格構(gòu)式結(jié)構(gòu)。與傳統(tǒng)的開口截面(H型鋼和I字鋼)鋼桁架相比,管桁架結(jié)構(gòu)截面材料繞中和軸較均勻分布,使截面同時具有良好的抗壓和抗彎扭承載能力及較大剛度。這種鋼構(gòu)不用節(jié)點板,構(gòu)造簡單,制作安裝方便、結(jié)構(gòu)穩(wěn)定性好、屋蓋剛度大??臻g三角形鋼管桁架在受到豎向均布荷載作用的時候,表現(xiàn)出腹桿抗剪、弦桿抗彎的受力機理。弦桿軸力的主要影響因素是截面的高度,而豎面斜腹桿軸力的主要影響因素是豎面腹桿與豎直線的傾角。水平腹桿在豎向荷載作用下的受力較小,但是如果受到明顯的扭矩作用的話,網(wǎng)架生產(chǎn)制作須考慮適當加大其截面尺寸。
網(wǎng)架廠家
管桁架結(jié)構(gòu)的結(jié)構(gòu)計算
設計基本規(guī)定。立體桁架的高度可取跨度的1/12~1/16,立體拱架的拱架厚度可取跨度1/20~1/30,矢高可取跨度的1/3~1/6。弦桿(主管)與腹桿(支管)及兩腹桿(支管)之間的夾角不宜小于30°。當立體桁架跨度較大(一般認為不小于30米鋼結(jié)構(gòu))時,可考慮起拱,起拱值可取不大于立體桁架跨度的1/300(一般取1/500)。此時桿件內(nèi)力變化“較小”,設計時可按不起拱計算。管桁架結(jié)構(gòu)在恒荷載與活荷載標準作用下的撓度值不宜超過短向跨度的1/250,懸挑不宜超過跨度1/125。對于設有懸掛起重設備的屋蓋結(jié)構(gòu)撓度不宜大于結(jié)構(gòu)跨度的1/400。當僅為改善外觀要求時,撓度可取恒荷載與活荷載標準作用下?lián)隙葴p去起拱值。一般情況下,按強度控制面而選用的桿件不會因為種種原因的剛度要求而加大截面。
一般計算原則。管桁架結(jié)構(gòu)應進行重力荷載及風荷載作用下的內(nèi)力、位移計算,并應根據(jù)具體情況,對地震、溫度變化、支座沉降及施工安裝荷載等作用下的位移、內(nèi)力進行計算。內(nèi)力和位移可按彈性理論,采用空間桿系的有限元方法進行計算。對非抗震設計,作用及作用組合的效應應按現(xiàn)行更好的標準《建筑結(jié)構(gòu)荷載規(guī)范》進行計算。在桿件截面及節(jié)點設計中,應按作用基本組合的效應確定內(nèi)力設計值。對抗震設計,地震組合的效應應按現(xiàn)行更好的標準《建筑抗震設計規(guī)范》進行計算。在位移驗算中,應按作用標準組合的效應(不乘荷載分項系數(shù))的效應確定其撓度。分析管桁架時,當桿件的節(jié)間長度與截面高度(或直徑)之比小于12(主管)和24(支管)時,也可假定節(jié)點為鉸接。外荷載可按靜力等效原則將節(jié)點所轄區(qū)域內(nèi)的荷載集中作用在該節(jié)點上。當桿件上作用有局部荷載時,應另行考慮局部彎曲應力的影響。結(jié)構(gòu)分析時,應考慮上部空間網(wǎng)格結(jié)構(gòu)于下部支承結(jié)構(gòu)的相互影響。另外應根據(jù)結(jié)構(gòu)形式、支座節(jié)點的位置、數(shù)量和構(gòu)造情況以及支承結(jié)構(gòu)的剛度,確定合理的邊界約束條件。支座節(jié)點的邊界約束條件,應按實際構(gòu)造采用無側(cè)移或一側(cè)可側(cè)移的鉸接支座或彈性支座。
靜力計算。管桁架結(jié)構(gòu)應經(jīng)過位移、內(nèi)力計算后進行桿件截面設計,如桿件截面需要調(diào)整應重新進行設計,使其滿足設計要求。設計后,桿件不宜替換,如因備料困難等原因須進行桿件替換時,應根據(jù)截面及剛度等效的原則進行,被替換的桿件應不是結(jié)構(gòu)的主要受力桿件且數(shù)量不宜過多(通常不超過全部桿件的百分之五),否則應重新校核。分析管桁架結(jié)構(gòu)因溫度變化而產(chǎn)生的內(nèi)力,可將溫差引起的桿件固端反力作為等效荷載反向作用在桿件兩端節(jié)點上,然后按有限元法分析。
抗震計算。在單維地震作用下,進行多遇地震作用下的效應計算時,可采用振興分解反應譜法,對于體形復雜或重要的大跨度結(jié)構(gòu)應采用時程分析進行補充計算。采用時程分析法時,應按建筑場地類別和設計地震分組選用不少于兩組的實際強震記錄和一組人工模擬的加速度時程曲線,其平均地震影響系數(shù)曲線應與振形分解反應譜法所采用的地震影響系數(shù)曲線在統(tǒng)計意義上相符。加速度曲線峰值應根據(jù)與抗震設防烈度相應的多遇地震的加速度時程曲線進行調(diào)整,并應選擇足夠長的地震動持續(xù)時間。當采用振形分解反應譜法進行管桁架結(jié)構(gòu)地震作用分析時,建議至少取前25~30個振形,對體形特別復雜或重要的需要取更多振形進行效應組合。在抗震分析時,應考慮支承體系對其受力的影響。此時可將桁架結(jié)構(gòu)與支承體系同時考慮,按整體分析模型進行計算;也可把支承體系簡化為管桁架結(jié)構(gòu)的彈性支座,按彈性支承模型進行計算。在進行結(jié)構(gòu)地震作用效應分析時,對于周邊落地的管桁架結(jié)構(gòu),阻尼比可取0.02,對有混凝土結(jié)構(gòu)支承的管桁架結(jié)構(gòu),阻尼比取0.03。對于體形復雜或較大跨度的管桁架結(jié)構(gòu),宜進行多維地震作用下的效應分析。進行多維地震效應計算時,可采用多維隨機振動分析方法、多維反應譜法或時程分析法。
計算軟件。目前,能對桁架結(jié)構(gòu)進行前處理分析驗算,后處理節(jié)點設計出圖的有STS、STCAD、MST2006、3D3S。STS桁架模塊能方便建立平面桁架模型,但不能建立空間桁架模型。STCAD的建模以及模型編輯功能都比較強,但是操作上比較不便,截面定義、分組繁瑣,其后處理節(jié)點設計的參數(shù)比較豐富。MST2006的桁架模型基本上套用網(wǎng)架模型的驗算功能。3D3S可方便輸入單元、節(jié)點、局部單元荷載,各種工況荷載都可以通過導荷載的方式由面荷載轉(zhuǎn)化為節(jié)點荷載,風荷載可自動考慮風壓高度變化系數(shù)、風振系數(shù)。工程中常使用計算軟件為3D3S。
網(wǎng)架生產(chǎn)廠家
桁架截面尺寸變化對其內(nèi)力的影響
對于空間三角形鋼管桁架而言,當確定了截面高度、上弦寬度以及節(jié)間長度后可確定一種截面形狀。隨著上弦寬度的變化,弦桿的內(nèi)力基本上保持不變,但是腹桿和跨中撓度都有顯著的變化。上弦寬度的增加,造成豎面腹桿的傾角相應增加,豎面腹桿的軸力在持續(xù)增加,傳遞到水平面上垂直腹桿的力也在增加。同時,豎面腹桿軸力的增加也造成了桿件剪切變形的增加,反映到結(jié)構(gòu)即是結(jié)構(gòu)跨中撓度的增加。在截面彎矩不變的情況下,上下弦桿的內(nèi)力也僅僅是當截面高度有變化的時候,才會發(fā)生較大幅度的變化,跟其它的截面參數(shù)沒有關(guān)系。同時隨著截面高度的增加,由于傾角的減少,腹桿的軸力表現(xiàn)持續(xù)的減少,而由于彎曲變形和剪切變形的減少,跨中的撓度也逐漸變小。截面高度是影響構(gòu)件選擇尤其是弦桿選擇的一個非常重要的因素,其對結(jié)構(gòu)剛度的影響遠大于其它因素。節(jié)間長度的大小會直接導致腹桿夾角的改變。改變節(jié)間長度以后,弦桿的內(nèi)力略有變化,同時腹桿的軸力有了相應的變化。隨著節(jié)間長度的增加,豎面腹桿的傾角相應增加,所以豎面腹桿的軸力在持續(xù)加大,傳遞到水平面上垂直腹桿的力也在增加??缰袚隙入S著節(jié)間長度的增加呈減少的趨勢,然后趨于穩(wěn)定。從中可以看出,如果腹桿布置過密,反而加大了跨中撓度。節(jié)間長度也并非是越大越好,為了保證腹桿與弦桿的連接的可靠,一般的傾角控制在35°~55°之間。
管桁架結(jié)構(gòu)因具有造型美觀、制作安裝方便、結(jié)構(gòu)穩(wěn)定性好、屋蓋剛度大、經(jīng)濟效果好等特點,已廣泛應用于公共建筑中。在設計過程中,網(wǎng)架生產(chǎn)廠家須把握管桁架的受力特點,才能設計出安穩(wěn)可靠、經(jīng)濟美觀的管桁架項目。